Analysis and Design of Launch Vehicle Flight Control Systems

نویسندگان

  • Bong Wie
  • Wei Du
  • Mark Whorton
چکیده

This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of “drift-minimum” and “load-minimum” control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of “unstably interacting” bending modes of large flexible launch vehicles is also shown to be effective and robust.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Utilization of High Fidelity Simulation in the Support of UAV Launch Phase Design: Three Case Studies

Improvement of the launch phase of a jet powered Unmanned Aerial Vehicle (UAV) with Jet Assisted Take Off (JATO), has been the subject of attention in the UAV industry. Use of flight simulation tools reduces the risk and required some amount of flight testing for complex aerospace systems. Full nonlinear equations of motion are used to study and simulate this maneuver and three case studies of ...

متن کامل

Nonlinear Optimal Control Techniques Applied to a Launch Vehicle Autopilot

This paper presents an application of the nonlinear optimal control techniques to the design of launch vehicle autopilots. The optimal control is given by the solution to the Hamilton-Jacobi-Bellman (HJB) equation, which in this case cannot be solved explicity. A method based upon Successive Galerkin Approximation (SGA), is used to obtain an approximate optimal solution. Simulation results invo...

متن کامل

Robust Integral Sliding-Mode Control of an Aerospace Launch Vehicle

An analysis of on-line autonomous robust tracking controller based on variable structure control is presented for an aerospace launch vehicle. Decentralized sliding-mode controller is designed to achieve the decoupled asymptotic tracking of guidance commands upon plant uncertainties and external disturbances. Development and application of the controller for an aerospace launch vehicle during a...

متن کامل

Learning About Ares I from Monte Carlo Simulation

This paper addresses Monte Carlo simulation analyses that are being conducted to understand the behavior of the Ares I launch vehicle, and to assist with its design. After describing the simulation and modeling of Ares I, the paper addresses the process used to determine what simulations are necessary, and the parameters that are varied in order to understand how the Ares I vehicle will behave ...

متن کامل

A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine

This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008